Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687399

RESUMO

Pathogens and pests constantly challenge food security and safety worldwide. The use of plant protection products to manage them raises concerns related to human health, the environment, and economic costs. Basic substances are active, non-toxic compounds that are not predominantly used as plant protection products but hold potential in crop protection. Basic substances' attention is rising due to their safety and cost-effectiveness. However, data on their protection levels in crop protection strategies are lacking. In this review, we critically analyzed the literature concerning the field application of known and potential basic substances for managing diseases and pests, investigating their efficacy and potential integration into plant protection programs. Case studies related to grapevine, potato, and fruit protection from pre- and post-harvest diseases and pests were considered. In specific cases, basic substances and chitosan in particular, could complement or even substitute plant protection products, either chemicals or biologicals, but their efficacy varied greatly according to various factors, including the origin of the substance, the crop, the pathogen or pest, and the timing and method of application. Therefore, a careful evaluation of the field application is needed to promote the successful use of basic substances in sustainable pest management strategies in specific contexts.

2.
J Fungi (Basel) ; 9(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623578

RESUMO

The pomegranate is a fruit known since ancient times for its beneficial properties. It has recently aroused great interest in the industry and among consumers, leading to a significant increase in demand. Consequently, its cultivation has been boosted all over the world. The pomegranate crop suffers considerable yield losses, especially at the postharvest stage, because it is a "minor crop" with few permitted control means. To control latent (Alternaria spp., Botrytis spp., Coniella spp., Colletotrichum spp., and Cytospora spp.) and wound (Aspergillus spp., Penicillium spp., and Talaromyces spp.) fungal pathogens, different alternative compounds, previously evaluated in vitro, were tested in the field on pomegranate cv. Wonderful. A chitosan solution, a plant protein hydrolysate, and a red seaweed extract were compared with a chemical control treatment, all as preharvest (field application) and postharvest treatments and their combinations. At the end of the storage period, the incidence of stamen infections and external and internal rots, and the severity of internal decay were evaluated. Obtained data revealed that pre- and postharvest application of all substances reduced the epiphytic population on stamens. Preharvest applications of seaweed extract and plant hydrolysate were the most effective treatments to reduce the severity of internal pomegranate decays. Furthermore, the influence of spider (Cheiracanthium mildei) cocoons on the fruit calyx as a possible barrier against postharvest fungal pathogens was assessed in a 'Mollar de Elche' pomegranate organic orchard. Compared to no-cocoon fruit (control), the incidence of infected stamens and internal molds in those with spiderwebs was reduced by about 30%, and the mean severity of internal rots was halved. Spiderwebs analyzed via Scanning Electron Microscopy (SEM) disclosed a layered, unordered structure that did not allow for the passage of fungal spores due to its mean mesh size (1 to 20 µm ca). The aims of this research were (i) to evaluate alternative compounds useful to control postharvest pomegranate decays and (ii) to evaluate the effectiveness of spiders in reducing postharvest fungal infections by analyzing related mechanisms of action. Alternative control means proposed in the present work and calyx spider colonization may be helpful to reduce postharvest pomegranate diseases, yield losses, and waste production in an integrated control strategy, satisfying organic agriculture and the planned goals of Zero Hunger Challenge launched by the United Nations.

3.
Microorganisms ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838405

RESUMO

This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).

4.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628731

RESUMO

Pomegranate (Punica granatum L.) is an emerging crop in Italy and particularly in southern regions, such as Apulia, Basilicata, and Sicily, due to favorable climatic conditions. The crop is affected by several pathogenic fungi, primarily in the field, but also during postharvest phases. The most important postharvest fungal diseases in pomegranate are gray and blue molds, black heart and black spot, anthracnose, dry rot, and various soft rots. The limited number of fungicides allowed for treatment in the field and the lack of postharvest fungicides make it difficult to control latent, quiescent, and incipient fungal infections. Symptomatic pomegranates from southern Italy were sampled and isolated fungi were morphologically and molecularly characterized. The data obtained revealed that various species of Penicillium sensu lato (including Talaromyces genus), Alternaria spp., Coniella granati, and Botrytis cinerea were the principal etiological agents of postharvest pomegranate fruit diseases; other relevant pathogens, although less represented, were ascribable to Aspergillus sect. nigri, Colletotrichum acutatum sensu stricto, and Cytospora punicae. About two thirds of the isolated pathogens were responsible for latent infections. The results obtained may be useful in planning phytosanitary control strategies from the field to storage, so as to reduce yield losses.

5.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920681

RESUMO

Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections.


Assuntos
Antifúngicos/farmacologia , Taninos Hidrolisáveis/farmacologia , Punica granatum/química , Inibidores da Topoisomerase/farmacologia , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Taninos Hidrolisáveis/química , Inibidores da Topoisomerase/química
6.
J Fungi (Basel) ; 7(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673441

RESUMO

This study was aimed at identifying Alternaria species associated with heart rot disease of pomegranate fruit in southern Italy and characterizing their mycotoxigenic profile. A total of 42 Alternaria isolates were characterized. They were obtained from pomegranate fruits with symptoms of heart rot sampled in Apulia and Sicily and grouped into six distinct morphotypes based on macro- and microscopic features. According to multigene phylogenetic analysis, including internal transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a SCAR marker (OPA10-2), 38 isolates of morphotypes 1 to 5 were identified as Alternaria alternata, while isolates of morphotype 6, all from Sicily, clustered within the Alternaria arborescens species complex. In particular, isolates of morphotype 1, the most numerous, clustered with the ex-type isolate of A. alternata, proving to belong to A. alternata. No difference in pathogenicity on pomegranate fruits was found between isolates of A. alternata and A. arborescens and among A. alternata isolates of different morphotypes. The toxigenic profile of isolates varied greatly: in vitro, all 42 isolates produced tenuazonic acid and most of them other mycotoxins, including alternariol, alternariol monomethyl ether, altenuene and tentoxin.

7.
Molecules ; 25(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991684

RESUMO

Pilidiella granati, also known as Coniella granati, is the etiological agent of pomegranate fruit dry rot. This fungal pathogen is also well-known as responsible for both plant collar rot and leaf spot. Because of its aggressiveness and the worldwide diffusion of pomegranate crops, the selection of cultivars less susceptible to this pathogen might represent an interesting preventive control measure. In the present investigation, the role of polyphenols in the susceptibility to P. granati of the two royalties-free pomegranate cultivars Wonderful and Mollar de Elche was compared. Pomegranate fruit were artificially inoculated and lesion diameters were monitored. Furthermore, pathogen DNA was quantified at 12-72 h post-inoculation within fruit rind by a real time PCR assay setup herein, and host total RNA was used in expression assays of genes involved in host-pathogen interaction. Similarly, protein extracts were employed to assess the specific activity of enzymes implicated in defense mechanisms. Pomegranate phenolic compounds were evaluated by HPLC-ESI-MS and MS2. All these data highlighted 'Wonderful' as less susceptible to P. granati than 'Mollar de Elche'. In the first cultivar, the fungal growth seemed controlled by the activation of the phenylpropanoid pathway, the production of ROS, and the alteration of fungal cell wall. Furthermore, antifungal compounds seemed to accumulate in 'Wonderful' fruit following inoculation. These data suggest that pomegranate polyphenols have a protective effect against P. granati infection and their content might represent a relevant parameter in the selection of the most suitable cultivars to reduce the economic losses caused by this pathogen.


Assuntos
Resistência à Doença , Micromonosporaceae/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Polifenóis/metabolismo , Punica granatum , Frutas/metabolismo , Frutas/microbiologia , Punica granatum/metabolismo , Punica granatum/microbiologia
8.
Biology (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396459

RESUMO

Flavine adenine dinucleotide (FAD) dependent glucose methanol choline oxidoreductase (GMC oxidoreductase) is the terminal key enzyme of the patulin biosynthetic pathway. GMC oxidoreductase catalyzes the oxidative ring closure of (E)-ascladiol to patulin. Currently, no protein involved in the patulin biosynthesis in Penicillium expansum has been experimentally characterized or solved by X-ray diffraction. Consequently, nothing is known about P. expansum GMC oxidoreductase substrate-binding site and mode of action. In the present investigation, a 3D comparative model for P. expansum GMC oxidoreductase has been described. Furthermore, a multistep computational approach was used to identify P. expansum GMC oxidoreductase residues involved in the FAD binding and in substrate recognition. Notably, the obtained 3D comparative model of P. expansum GMC oxidoreductase was used for performing a virtual screening of a chemical/drug library, which allowed to predict new GMC oxidoreductase high affinity ligands to be tested in in vitro/in vivo assays. In vitro assays performed in presence of 6-hydroxycoumarin and meticrane, among the highly affinity predicted binders, confirmed a dose-dependent inhibition (17-81%) of patulin production by 6-hydroxycoumarin (10 µM-1 mM concentration range), whereas the approved drug meticrane inhibited patulin production by 43% already at 10 µM. Furthermore, 6-hydroxycoumarin and meticrane caused a 60 and 41% reduction of patulin production, respectively, in vivo on apples at 100 µg/wound.

9.
Int J Food Microbiol ; 314: 108389, 2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-31683087

RESUMO

Most of diseases of pomegranate fruit are caused by fungal pathogens, which provoke postharvest yield and economical losses. Aspergillus and Penicillium sensu lato (s.l.) are the main wound pathogens of pomegranate fruit. In the present investigation, the populations of Aspergillus and Penicillium s.l. isolated from pomegranate fruit in Southern Italy were characterized. Since the morphological identification of species belonging to these genera is laborious, molecular approaches, such as PCR and High-Resolution Melting (HRM), were used. Particularly, a specific primer pair was designed to discriminate, within the Penicillium s.l. population, Penicillium sensu stricto (s.s.) from Talaromyces strains. Then, a new HRM assay for species identification within Penicillium s.s. according to SNPs present in a portion of the beta-tubulin gene was set up. Similarly, Aspergillus sect. nigri population was characterized arranging a HRM assay, whose primer pair was designed on a portion of the calmodulin gene. According to these assays, 10% of the Penicillium s.l. population proved to be made up of Talaromyces biverticillius strains. Furthermore, six species of Penicillium s.s. (P. adametzioides, P. brevicompactum, P. citrinum, P. glabrum, P. pagulum, and P. johnkrugii) and four of black aspergilli (A. tubingensis, A. welwitschiae, A. japonicus, and A. uvarum) were identified; all species belonging to both genera disclosed different incidences in postharvest rotted pomegranate fruit. Moreover, since Aspergillus and Penicillium are potentially producers of mycotoxins, like ochratoxin A and fumonisins, the presence/absence of genes involved in mycotoxin biosynthetic pathways was tested. Some Aspergillus strains belonging to species A. welwitschiae proved to possess fumonisin genes. The setup of molecular tools to characterize Penicillium s.l. and Aspergillus sect. nigri species infecting pomegranate fruit after harvest is of paramount importance for their effective control, even more considering the ability of these fungal genera to produce mycotoxins, which are hazardous for human health and potentially present also in by-products.


Assuntos
Aspergillus/genética , Microbiologia de Alimentos , Penicillium/genética , Punica granatum/microbiologia , Aspergillus/classificação , Aspergillus/isolamento & purificação , Frutas/microbiologia , Genes Fúngicos/genética , Itália , Micotoxinas/genética , Técnicas de Amplificação de Ácido Nucleico , Penicillium/classificação , Penicillium/isolamento & purificação
10.
J Nematol ; 49(4): 418-426, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29353931

RESUMO

Two different nematode species were recovered from pomegranate decaying fruit in two localities in Southern Italy: the mycetophagus nematode Sheraphelenchus sucus and a bacterial feeder nematode belonging to the Panagrolaimidae (Rhabditida) family. Morphometrics of the Italian population of S. sucus closely resemble that of the type population, whereas some differences were found when compared with another population from Iran. Molecular characterization of the Italian S. sucus using the 18S rRNA gene, D2-D3 expansion domains of the 28S rDNA, the ITS region, and the partial mitochondrial COI were carried out. Sequences of the 18S rRNA gene, the D2-D3 domains, and the ITS were analyzed using several methods for inferring phylogeny to reconstruct the relationships among Sheraphelenchus and Bursaphelenchus species. The bacterial feeder Panagrellus sp. was characterized at the molecular level only. The D2-D3 expansion domains and ITS sequences of this Italian panagrolaimid were determined. The D2-D3 sequences of the Italian panagrolaimid showed 99% similarity with the corresponding sequence of Panagrellus sp. associated with Rhynchophorus ferrugineus. This is the first report on the tritrophic association of S. sucus and Rhabditida that uses both insects and pomegranate fruit as hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...